流变改性用金属茂制备的聚合物
2020-01-08

流变改性用金属茂制备的聚合物

本发明包括一种制备偶联聚合物的方法,其包括加热1)至少一种含乙烯和至少一种选自具有至少3个碳原子的α-烯烃、二烯烃的共聚单体的聚烯烃与(2)偶联量的至少一种多(磺酰基叠氮化物)的掺混物。该聚烯烃为乙烯与至少一种α-烯烃在单点催化剂(过渡金属如V或Cr金属茂或束缚几何催化剂)存在下聚合产品。

对于软化点高于偶联剂分解温度(优选大于200℃)的聚合物,特别是当(例如在母料中)加入低熔点聚合物不合适时,加入偶联剂的优选实施方案是将偶联剂溶液或混合物溶混入聚合物中,以使聚合物吸液(吸附或吸收至少一些偶联剂),然后蒸发溶剂。蒸发后,将所得混合物挤出。溶剂优选为偶联剂的溶剂,当聚合物可溶解(如对于聚碳酸酯)更优选也是聚合物的溶剂。这些溶剂包括极性溶剂如丙酮、THF(四氢呋喃)和氯代烃如二氯甲烷。此外,可使用其它非极性化合物如矿物油,这些化合物与偶联剂充分混溶以将偶联剂分散于聚合物中。

实施本发明获得的聚合物不同于实施例如CA797,917中给出的现有技术获得的那些聚合物。与未改性的聚合物和宽MWD(大于3.0Mw/Mn)对比物相比,本发明的聚合物在热成型和大部件吹塑中显示改进的熔体弹性(即较高的tanδ,通过DMS测量)、较好的可拉伸性(即较高的熔体强度,通过熔体拉伸测量)、较低的溶胀性(通过吹塑模头溶胀测量)、和较低的收缩性(通过模塑收缩性测量)。

对于窄分布的线性共聚物(实施例3和4及实施例9和10),因同时存在窄MWD和高共聚单体含量,流变改性效率高。对于给定密度,这些聚合物中使用的共聚单体(分别为丁烯和丙烯)比相应密度的乙烯-辛烯共聚物高。例如,对于0.1wt%的偶联剂,在0.1rad/sec时的粘度变化对于实施例2为241%,对于实施例4为2214%。

用于本发明的线性或基本上线性乙烯聚合物的密度(根据ASTMD-792测量)通常低于0.95g/cm3。该密度优选至少0.85g/cm3,特别是至少0.86g/cm3,优选至多0.94g/cm3,更优选至多0.92g/cm3。当改性树脂用于挤出和注塑时,聚合物的密度优选为至少0.855g/cm3,更优选至少0.865g/cm3,进一步更优选至少0.870g/cm3,优选至0.900g/cm3,更优选至0.885g/cm3,进一步更优选至0.880g/cm3。最优选的密度主要通过模塑制品所需的弹性模量或挠曲性确定。该密度在进行本发明的流变改性期间基本上保持恒定。

在本发明中,当给出优选的分子量分布时,那些分布是指由GPC曲线的一个峰表示的至少一个组分的MWD。该组分优选为用单点催化剂制备的组分。

为避免额外的步骤和在再挤出的额外费用并确保偶联剂充分混入聚合物中,在另一优选实施方案中,优选将偶联剂加入聚合物制备装置的后反应器区域中,例如在淤浆法生产聚乙烯时,在滗析除去溶剂后并在干燥和压实挤出工艺之前将偶联剂以粉末或液体形式加入聚乙烯粉末中。在另一优选实施方案中,当用气相法制备聚合物时,优选将偶联剂在压实挤出前以粉末或液体形式加入聚乙烯粉中。在另一优选实施方案中,当聚合物用溶液法制备时,优选将偶联剂在脱挥发之后并在造粒挤出步骤之前加入聚合物熔体流中。

术语“双峰值”用于指在表示由适合测量讨论的性能的分析数据图上显示双峰的聚合物。例如,对于分子量,凝胶渗透色谱(GPC)曲线用于测定分子量分布。这些分布是统计观察的,即称为统计分布。因此,当具有一个峰时,该分布具有一个峰值,因此是单峰值的。通过该分析方法显示双峰的聚合物称为双峰值。显示两个或多个峰的聚合物为多峰值聚合物。对于分子量分布,该双峰值聚合物通常为具有不同数均分子量的两种聚合物的共混物。该共混物非必要地为在反应器内的共混物或通过将在第一个反应器中制备的第一种聚合物加入生成第二种聚合物的第二个反应器中形成的共混物。这里双峰值聚合物为多峰值聚合物的一个例子。换言之,当讨论具有具有双峰值特征的聚合物时,多峰值聚合物也是合适的。本领域熟练技术人员认识到,峰常常具有重叠区域,因此某些时候需要数学分析以区分双峰值曲线与宽的不规则曲线。

这些制品还可通过熔体加工包括基本上含有未反应的偶联剂的均相聚合物的中间体制备。将该中间体优选用偶联剂处理,但直到将聚合物熔化制备制品时才进行后续熔体加工。该偶联剂可为辐射或热活化交联剂。

在本发明中,当给出优选的分子量分布时,那些分布是指由GPC曲线的一个峰表示的至少一个组分的MWD。该组分优选为用单点催化剂制备的组分。

对于窄分布的线性共聚物(实施例3和4及实施例9和10),因同时存在窄MWD和高共聚单体含量,流变改性效率高。对于给定密度,这些聚合物中使用的共聚单体(分别为丁烯和丙烯)比相应密度的乙烯-辛烯共聚物高。例如,对于0.1wt%的偶联剂,在0.1rad/sec时的粘度变化对于实施例2为241%,对于实施例4为2214%。

流变改性用金属茂制备的聚合物

本发明包括一种制备偶联聚合物的方法,其包括加热1)至少一种含乙烯和至少一种选自具有至少3个碳原子的α-烯烃、二烯烃的共聚单体的聚烯烃与(2)偶联量的至少一种多(磺酰基叠氮化物)的掺混物。该聚烯烃为乙烯与至少一种α-烯烃在单点催化剂(过渡金属如V或Cr金属茂或束缚几何催化剂)存在下聚合产品。

这些薄膜可为单层或多层薄膜。用本发明制备的薄膜还可与其它层一起共挤出或将该薄膜在第二次操作中层压至另一层上,如描述于塑料包装食品,Wilmer A.Jenkins和James P.Harrington(1991)或描述于“用于阻挡包装的共挤出”,W.J.Schrenk和C.R.Finch,塑料工程师RETEC会议会志,6月15-17日(1981),pp211-229中。若单层薄膜由管形薄膜(即吹膜技术生产)或扁平模头(即流延膜)生产,如描述于K.R.Osborn和W.A.Jenkin“塑料薄膜、技术和包装应用”(Techomic Publishing Co.,Inc.,1992)中的,则该薄膜必须通过另一粘合剂后挤出步骤或挤出层压至其它包装材料层上形成多层结构。若该薄膜为共挤出的两层或多层(同样如Osborn和Jenkins描述的),则该薄膜仍可层压至另一些包装材料层上,取决于最终薄膜的其它物理要求。D.Dumbleton在“共挤出层压”(Converting Magazine(1992年9月))中还讨论了共挤出层压。单层和共挤出薄膜还可通过其它后挤出工艺如双轴取向方法加工。

这里所用的术语“基本上线性的”是指除了引入均相共聚单体带来的短支链外,该乙烯聚合物的另一特征是具有长支链,表现为该聚合物主链被平均0.01个至3个长支链/1000个碳原子取代。优选用于本发明的基本上线性聚合物被0.01个长支链/1000个碳原子至1个长支链/1000个碳原子,更优选0.05个长支链/1000个碳原子至1个长支链/1000个碳原子取代。

这里所用的术语“基本上线性的”是指除了引入均相共聚单体带来的短支链外,该乙烯聚合物的另一特征是具有长支链,表现为该聚合物主链被平均0.01个至3个长支链/1000个碳原子取代。优选用于本发明的基本上线性聚合物被0.01个长支链/1000个碳原子至1个长支链/1000个碳原子,更优选0.05个长支链/1000个碳原子至1个长支链/1000个碳原子取代。

对比样品E和对比样品F通过储能模量和Tg的微小变化显示偶联的微小效果。对于对比样品H和对比样品I,随着叠氮化物量增加,未观察到Tg位移,模量轻微增加。实施例5和6显示储能模量的显著变化:在25℃增加38%,在153℃时增加167%。Tg在0.1%量时升高7℃。

流变改性聚合物和用于制备流变改性的聚合物的中间体可单独使用或与一种或多种另外的聚合物以聚合物共混物形式结合使用。当存在另一些聚合物时,它们可选自上述用于本发明的任何改性或未改性均相聚合物、任何改性或未改性非均相聚合物或其组合。

相对于聚合物主链的分子量分布测定通过用窄分子量分布聚苯乙烯标准物(购自聚合物实验室公司)和其洗脱体积推导。当量聚乙烯分子量用聚乙烯和聚苯乙烯的合适Mark-Houwink系数(如Williams和Ward在聚合物科学期刊,聚合物通讯,Vol.6,p.621(1968)中描述的)根据如下方程测定:M聚乙烯=a*(M聚苯乙烯)b在该方程中,a=0.4316,b=1.0。重均分子量Mw和数均分子量Mn按照常规方式通过公式Mj=(∑wi(Mij))j计算,其中wi为洗脱自GPC柱的第i个级分的具有分子量Mi的分子的重量分数,当计算Mw时,j=1,计算Mn时,j=-1。

对比样品G、H和I:用乙烯(71wt%)丙烯(23wt%)二烯烃(6wt%)三元聚合物(具有Mw/Mn=2.98和Mw=173,200,门尼粘度45±6(通过ASTM D1646测量)、以商品牌号Nordel 2744烃橡胶购自杜邦-陶氏弹性体公司,据报道用齐格勒-纳塔催化剂制备)和对于对比样品G、对比样品H、对比样品I分别用0.0、0.05wt%和0.10wt%BSA重复实施例1的步骤。

对于软化点高于偶联剂分解温度(优选大于200℃)的聚合物,特别是当(例如在母料中)加入低熔点聚合物不合适时,加入偶联剂的优选实施方案是将偶联剂溶液或混合物溶混入聚合物中,以使聚合物吸液(吸附或吸收至少一些偶联剂),然后蒸发溶剂。蒸发后,将所得混合物挤出。溶剂优选为偶联剂的溶剂,当聚合物可溶解(如对于聚碳酸酯)更优选也是聚合物的溶剂。这些溶剂包括极性溶剂如丙酮、THF(四氢呋喃)和氯代烃如二氯甲烷。此外,可使用其它非极性化合物如矿物油,这些化合物与偶联剂充分混溶以将偶联剂分散于聚合物中。

实施本发明的聚合物流变改性方法获得流变改性的或链偶联的聚合物,即在不同聚合物链之间具有磺酰胺、胺、烷基取代或芳基取代羧酰胺、烷基取代或芳基取代膦酰胺、烷基取代或芳基取代亚甲基偶联的聚合物。所得化合物因长聚合物链偶联至聚合物主链上有利地显示比起始聚合物高的低剪切粘度。具有宽分子量单峰值分布和凝胶量低于10%(通过二甲苯萃取测定)的聚合物(MWD为3.0以上)显示比凝胶量低于10%(通过二甲苯萃取萃取测定)的窄MWD聚合物(例如MWD=2.0)的显著效果低的改进。此外,本领域熟练技术人员认识到,可以通过后反应器配料方式或通过在多反应器体系中制备聚合物(其中控制各反应器的条件以对最终产品的各具体树脂组分提供具有所需分子量和MWD的聚合物)的方式,掺混低多分散度的聚合物,由此制备具有较宽多分散度(例如MWD大于2.0)的聚合物。

相对于聚合物主链的分子量分布测定通过用窄分子量分布聚苯乙烯标准物(购自聚合物实验室公司)和其洗脱体积推导。当量聚乙烯分子量用聚乙烯和聚苯乙烯的合适Mark-Houwink系数(如Williams和Ward在聚合物科学期刊,聚合物通讯,Vol.6,p.621(1968)中描述的)根据如下方程测定:M聚乙烯=a*(M聚苯乙烯)b在该方程中,a=0.4316,b=1.0。重均分子量Mw和数均分子量Mn按照常规方式通过公式Mj=(∑wi(Mij))j计算,其中wi为洗脱自GPC柱的第i个级分的具有分子量Mi的分子的重量分数,当计算Mw时,j=1,计算Mn时,j=-1。

这些试验的结果在表1中给出。